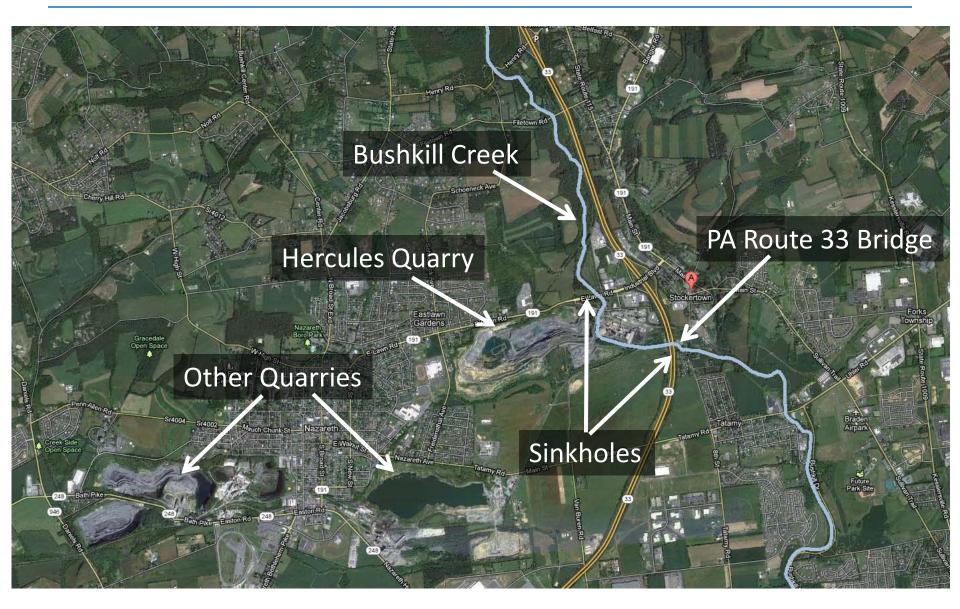

Simulating Groundwater Flow Patterns in Quarry Vicinities Using Numerical Groundwater Flow Model

Brent A. Meyer, M.S. & Todd R. Kincaid, Ph.D. GeoHydros, LLC – Reno NV

2012 Annual NWRA Conference Las Vegas, NV

I The ride

Site: Stockertown Pennsylvania



•

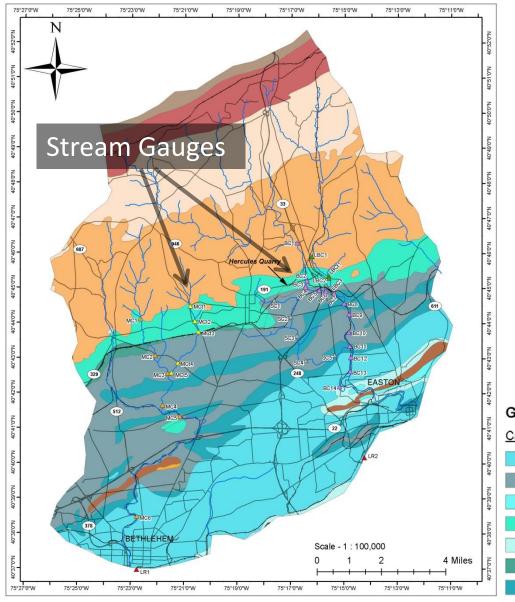

•

Key Features

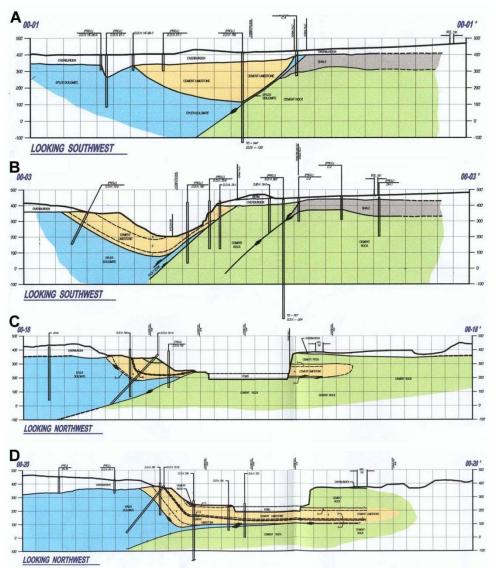
Quarry Infiltration: 5-7 MGD

Sinkhole Damage to Property & Infrastructure

<u>Cause:</u>


Presumed to be due to drawdown caused by quarry dewatering. <u>Primary modeling objective:</u>

Delineate dewatering zone of influence.


Geology & Hydrology

- Quarry situated at contact between carbonate and noncarbonate (shale) units.
- Numerous streams loose water to aquifer once they cross into carbonates.
- Extensive and widespread sinkhole development in carbonate region.

3D Geologic Complexities

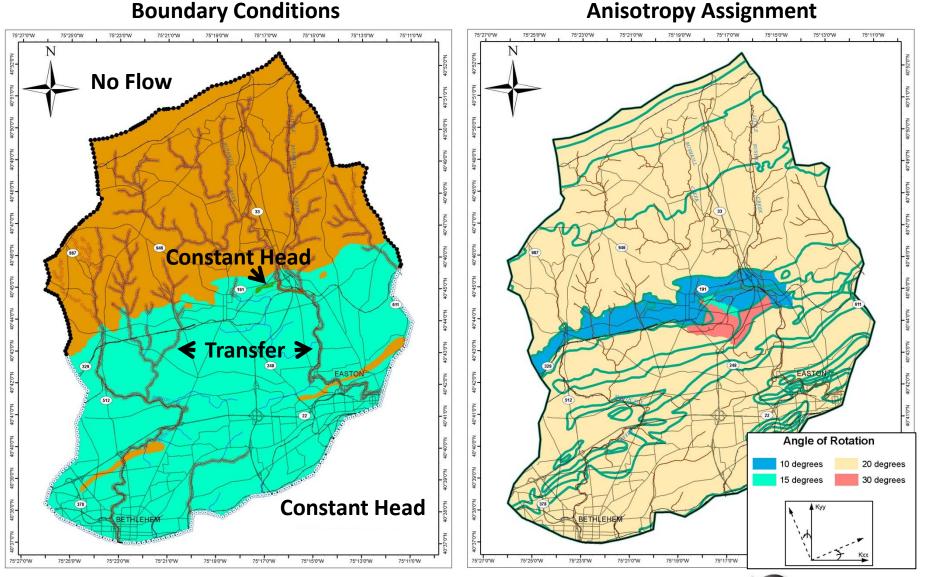
- Model was 3D, containing 2 layers representing the ????
- Continue with description here.

Previous Modeling Limitations

(UTM meters) West East ---Change in Water Table Elevation (feet

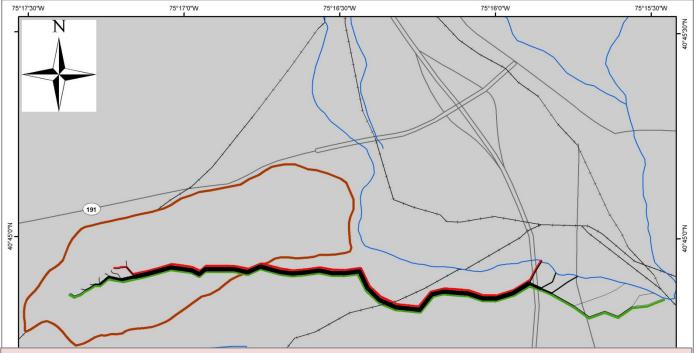
Predicted Zone of Influence: Hercules Only

Previous modeling was relatively simplistic, homogeneous, isotropic, no karst features, did not account for stream flow losses.


451150

- Predicted zone of influence did not extend to observed sinkholes between the quarry and HWY 33.
- USGS completed a model that attempted to address anisotropy due to karst.
- Quarry asked to update their model and include karst.

8



Model Design: Streams & Anisotropy

GeoHydros

Model Design: Karst Conduits

- Model was designed using the software FEFLOW[™]
- Conduits were assigned as 1D linear features
- Connected seeps in quarry floor to sinkholes in creek where connection and velocity was established by tracing.
- Conduit flow simulated using the Manning-Strickler eq.
- Matrix flow simulated using the Darcy eq.

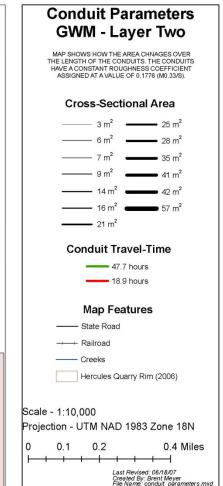
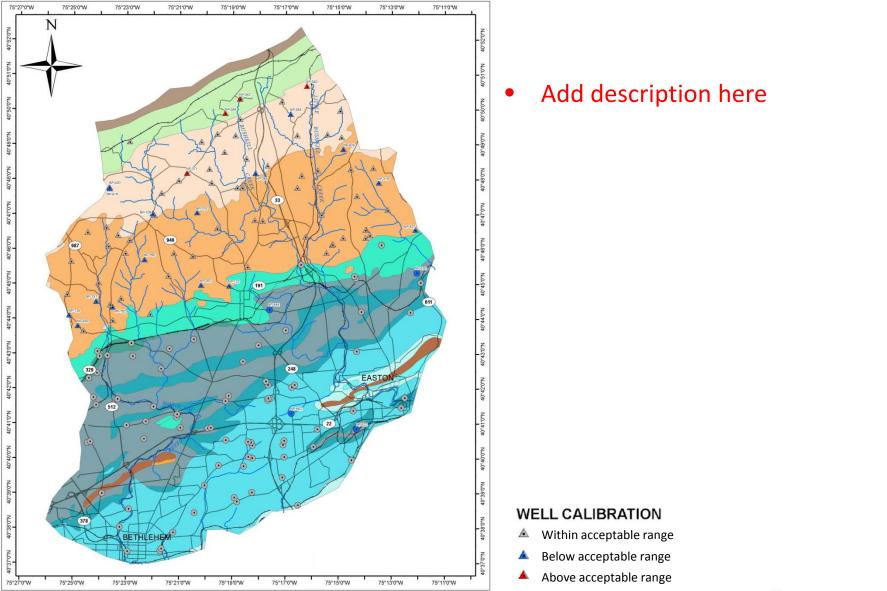
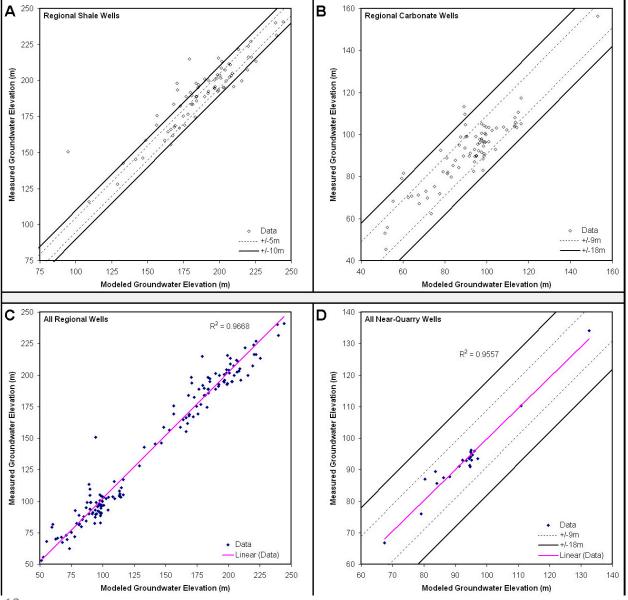



FIGURE 15: Location and size of conduits connecting the Bushkill Creek with the exposure of the Epler Formation in the Hercules Quarry floor relative to the inferred travel time along the main conduit flow paths, Stockertown Pennsylvania.



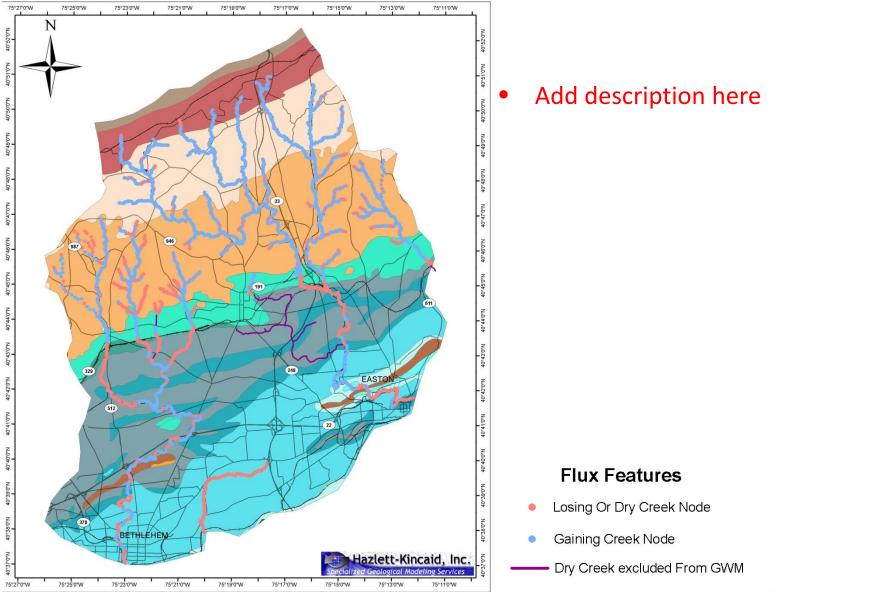
Model Calibration: Acceptability by Area

Model Calibration: Heads by Area

• Add description here

12

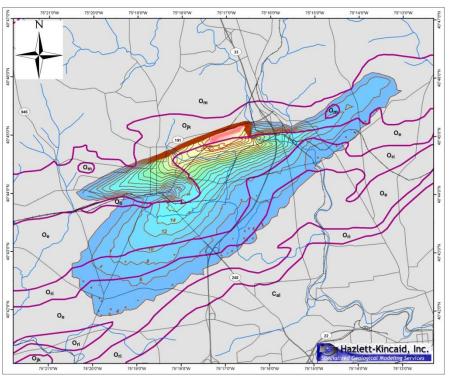
Model Calibration: Stream Flows


Table 6. Comparison of estimated and simulated losses and gains to and from the aquifer.

	Estimated	Model				
	Gain/Loss	Gain/Loss				
Station	m ³ /s (cfs)	m ³ /s (cfs)	Geologic Unit / Comments			
Monocacy Cr	eek					
MC1	0.06 (2.1)	0.06 (2.2)	Martinsburg			
MC2	-0.06 (-2.1)	-0.05 (-1.7)	Jacksonburg-Epler			
MC3	0.0	0.02 (0.6)	Epler			
MC4	0.03 (1.2)	0.02 (0.8)	Epler-Rickenbach			
MC5	0.27 (9.7)	0.03 (1.0)	Epler-Rickenbach / Unaccounted for inputs?			
MC6	1.62 (57.3)	-0.07 (-2.6)	Epler-Allentown / Unaccounted for inputs?			
Total	1.93 (68.2)	0.01 (0.3)	Possible unaccounted for inputs, i.e. quarry discharges, springs, etc.			
Monocacy Cr	eek Tributary		1			
MCt1	0.03 (0.9)	0.04 (1.5)	Martinsburg			
MCt2	0.01 (0.4)	0.04 (1.2)	Jacksonburg			
MCt3	0.08 (2.7)	0.00 (-0.1)	Jacksonburg / Unaccounted for inputs?			
MCt4	-0.05 (-1.8)	-0.09 (-3.2)	Epler			
MCt5	-0.05 (-1.9)	0.00 (-0.2)	Epler			
Total	0.01 (0.3)	-0.02 (-0.6)				
Bushkill Cree	k					
BC1	0.44 (15.6)	0.44 (15.7)	Martinsburg			
BC2	0.01 (0.2)	-0.01 (-0.3)	Jacksonburg			
BC3	-0.01 (-0.3)	-	Jacksonburg			
BC6	-1.37 (-48.3)	-1.45 (-51.3)	Epler / Quarry Discharge: Stream gains 82.2 cfs between BC3 & BC6			
BC7	-0.19 (-6.8)	-0.13 (-4.4)	Epler			
BC8	-0.09 (-3.2)	-0.07 (-2.6)	Rickenbach			
BC9	0.15 (5.2)	-0.01 (-0.4)	Epler-Rickenbach			
BC10	-0.20 (-7.0)	-0.02 (-0.6)	Epler			
BC11	0.36 (12.8)	-0.01 (-0.4)	Epler-Rickenbach			
BC12	0.02 (0.7)	0.0	Allentown-Rickenbach			
BC13	0.03 (1.0)	0.02 (0.7)	Allentown			
BC14	0.07 (2.4)	0.05 (1.8)	Allentown			
Total	1.54 (54.5)	1.15 (40.5)				
Little Bushkill	Creek					
LBC1	0.27 (9.7)	0.24 (8.5)	Martinsburg			
LBC2	-0.01 (-0.4)	0.03 (1.0)	Martinsburg-Jacksonburg			
LBC3	-0.05 (-1.8)	-0.07 (-2.5)	Jacksonburg-Epler			
Total	0.21 (7.5)	0.20 (7.0)				
	Creek Tributary					
LBCt1	0.01 (0.4)	0.01 (0.2)	Martinsburg-Jacksonburg			
Schoeneck C						
Total	0.0	0.00 (-0.1)	Martinsburg-Jacksonburg			
Lehigh River	0.50 (00.6)	1.00 (50.4)				
LR2 2.50 (88.3) 1.60 (56.4)			Allentown / Estimated input – poor confidence in estimated value			
Total Lehigh	River Boundary	171 (01 5)	Allentown-Leithsville			
	>2.50 (>88.3)	1.74 (61.5)	Estimated input – poor confidence in estimated value			
Total Delaw	are River Boundar	/	Epler-Allentown-Leithsville-Gneiss-Franklin			
	NR	0.67 (23.8)	Currently not possible to estimate real inputs			

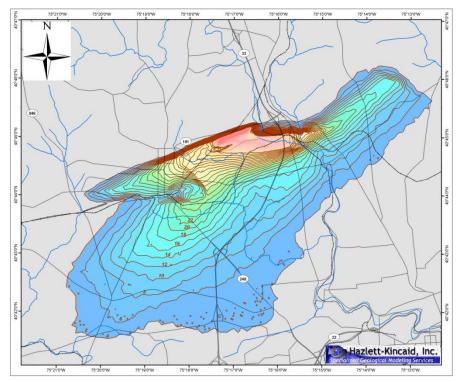
• Add description here

Model Results: Stream Flows



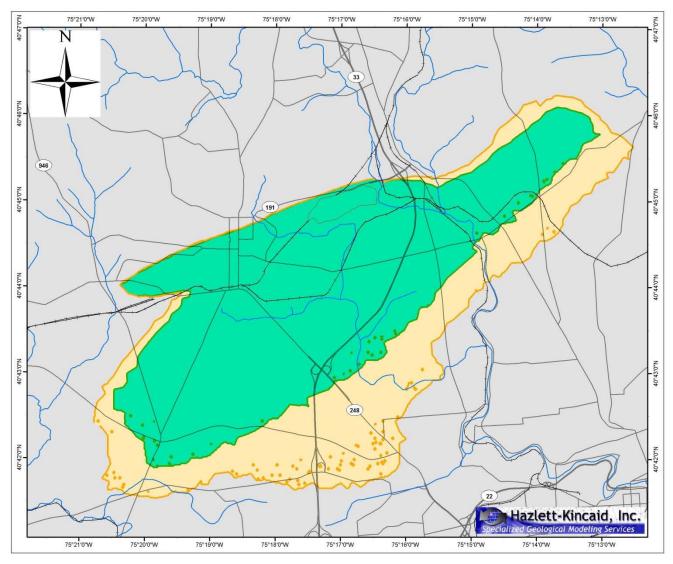

Model Results: Lined vs. Unlined Stream

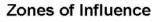
Model-Simulated Zone of Influence

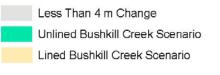

Unlined Stream Scenario (Calibrated Model)

Decrease in Water Level (meters)

Lined Stream Scenario



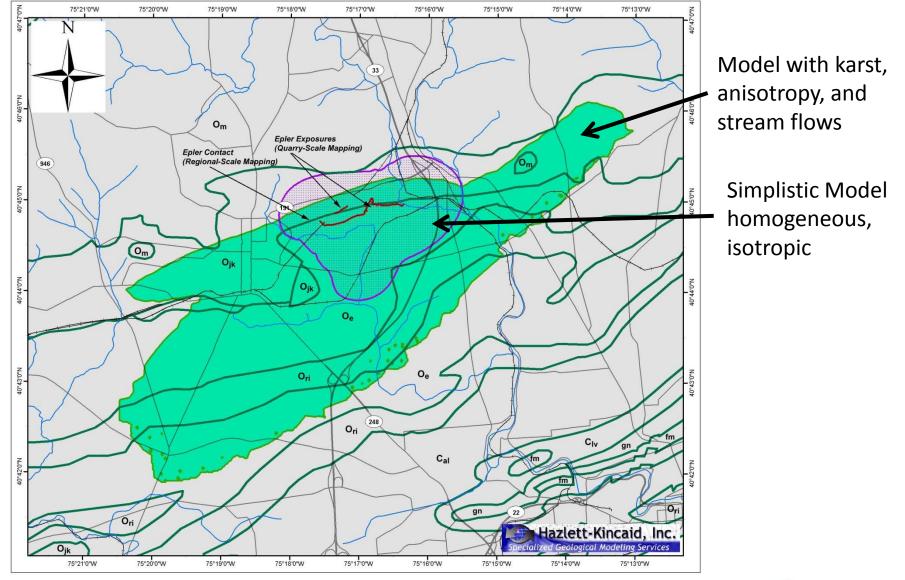

• Add description here



Model Results: Lined vs. Unlined Stream

Model-Simulated Zone of Influence

Scenario Analyses


Table 7. Magnitude and source of Quarry discharge simulated for the current conditions, stream lining, and two versions of the build down model scenarios.

	Components of Simulated Quarry Discharge m ³ /s (cfs)								
Scenario	Total	Jacksonburg	Epler	Aquifer	River	Streambed	Sinkholes		
Current Conditions	2.47 (87.4)	0.14 (4.8)	2.34 (82.5)	0.54 (19.1)	1.93 (68.3)	0.41 (14.5)	1.52 (53.8)		
1 – Lined Stream	1.18 (41.6)	0.11 (4.0)	1.06 (37.6)	1.18 (41.6)	0.00	0.00	0.00		
2a – Build Down	3.26 (115.2)	0.19 (6.8)	3.07 (108.4)	1.00 (35.5)	2.26 (79.7)	0.74 (26.0)	1.52 (53.8)		
2b – Build Down	3.81 (134.7)	0.20 (7.0)	3.62 (127.7)	0.72 (25.4)	3.09 (109.2)	0.57 (20.1)	2.52 (89.1)		
3 – Plugged Epler	0.59 (21.0)	0.18 (6.4)	0.41 (14.63)	NC	NC	NC	NC		

- Used model to simulate how mitigation strategies and potential quarry builddown scenarios would likely change the magnitude and source of discharge into the quarry.
- Ultimately recommended that sealing the quarry floor would have a significantly greater effect on reducing both quarry discharge and the zone-of-influence in the aquifer than other mitigation strategies.

Comparing Predictions: Zone of Influence

Summary

- Model successfully incorporated observed karst conduit features and inferred anisotropies as well as observed stream flow gains and losses.
- Incorporating the hydrogeologic complexities fostered a strong calibration to observed heads and stream flows.
- Strong calibration and incorporation of observed complexities increased confidence in the predictions with the State.
- Simulated zone of influence was accepted by State and used as a basis for negotiating terms for consent order-driven mitigation of impacts from sinkhole development associated with dewatering.
- Model also proved to be a useful tool for evaluating future design and build-down scenarios.

Dr. Todd R. Kincaid Group Leader / Geologic Modeler <u>kincaid@geohydros.com</u>

Brent A. Meyer Hydrogeologic Modeler <u>meyer@geohydros.com</u>

