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Presenter
Presentation Notes
The purpose of this presentation is to provide an overview of the karst modeling research that the FGS and GeoHydros have been engaged in for the past 10 years. The fundamental problem is the veracity of groundwater models constructed for karst regions of the Floridan aquifer. It is widely recognized that traditional groundwater flow models fail to adequately simulate groundwater flow patterns and velocities in karst. The purpose of this research has been to improve upon the traditional modeling methodologies and produce a test-case model that adequately simulates karstic hydrologic complexities: large magnitude discrete spring flow, large magnitude discrete swallet recharge, conduit flow, and very fast groundwater velocities. We have accomplished this goal through our work in the Woodville Karst Plain on Wakulla Springs and through work that GeoHydros performed in the western Santa Fe River Basin with the Coca-Cola Company.

This presentation focuses first on a model developed for the western Santa Fe River Basin. We will compare the results of our new modeling method to the traditional groundwater flow model that is being used by the Suwannee River Water Management District. We will show that where the traditional model fails to adequately simulate observable karstic groundwater flow, the new model does so very well. We’ll show why the traditional model fails and how the new model can be applied to address springshed delineations, spring and aquifer vulnerability assessments, the impacts of groundwater withdrawals, and the transport and fate of groundwater contamination.

The focus of the presentation will then shift to the status of a larger regional groundwater flow model that is being developed using the new methodology for the region in north Florida and south Georgia that contributes water to Wakulla, Spring Creek, St. Marks, and Wacissa springs. Finally, we’ll show how the new methodology could be applied to address MFL and TMDL work being performed throughout Florida’s karst belt (the region of Florida that extends from Tallahassee, across the western half of the peninsula to Tampa).


Problem — Diminishing Groundwater Flow

O Diminished Spring Flows

* Reduced flow to Wakulla & Spring Creek springs
= Spring Creek is now reversing flow in summers
= Flow is diverted to Wakulla
= Diminished water clarity at Wakulla
= Salt water intrusion at Spring Creek

e Rapid and pervasive salt water intrusion
= Spring Creek reversals send salt water at least 3 miles inland via conduits

= Salt water persists at depth until groundwater levels rise sufficiently to force it
back out

= Duration of salt water intrusions and vertical extent likely increasing
O Failing to recognize and address problems
 Pumping and sea level rise important factors

O Existing models and modeling approaches incapable of delivering reliable
predictions

e (Cedar Key
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Why are models failing?

O Inaccurate conceptualization
e Assume “Equivalent Porous Media” — Aquifer is a sand box
e Reality — Aquifer is karst where conduit flow is dominant

O Inaccurate water budget

e Let models dictate how much water flows through the aquifer
= Coastal boundaries are not constrained
= Assume large diffuse flow to Gulf of Mexico (no data)

e Reality — Spring flows represent majority of flow to Gulf of Mexico
O Do notincorporate all of the key factors affecting flow

* Not large enough (political vs. natural boundaries)

e Overly simplified spatial and magnitude assignments (i.e. pumping)

e Lack of data — (can usually be overcome with enough work)

== GeoHydros

4 of 70 e Specialized Geological Modeling



Modeling Problem Examples

Catbration Residual Lines | A North Florida Model (SRWMD)
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Modeling Problem Examples

NFM-08 UFA (Unconfined) River & Drain Node Residuals
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Modeling Problem Examples

Transmissivity Analysis: Simulated vs. Observed Difference

Transmissivity Difference
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Modeling Problem Examples - Result
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[The Reynolds number relates the
four factors that determine whether
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that Darcy's Law is valid only when
conditions are such that the resistive
forces of viscosity predominate.
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Modeling Problem Examples - Result

North Florida Modl A

UFA Head Difference (ft)

Head difference is defined by subtracting
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Modeling Problem Examples - Result

North Florida Model Aquifer Stress Analysis: Gainesville Zone of Influence

Zone of Influence
NFM-08 defined

[ ACEPD defined
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potentiometric surface maps and UFA
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NFM-08 ZO! based on UFA (layer 3)
particle tracks.

Approximate ZOIl Area
NFM-08 = 92 sq. miles

ACEPD May, 2001 = 222 sq. miles  |£/

ACEPD Sept, 2001 = 200 sq. miles [/

V) WSFM-08 Model

NFM Simulated Extraction L/,

®  Wells (0.5 MGD)

Roads
Urban Land

) Miles
0 25 5

// .= ;
I~ Sept, 2001

\

\

Produced by: BM

| Production Date: 06/19/2013

quoHydros

10 of 70

Under-predicts Gainesville zone of
influence by 100+ square miles

GeoHydros

Specialized Geological Madeling




Modeling Problem Examples - Result

Over-estimates total flow through

aquifer

Total Simulated UFA Flux 13,130 - Under-estimates impacts of

Rivers & Springs
Wells
Coastal Boundaries

Non-coastal Boundaries

Non-verifiable Boundaries = 38% of Total UFA Flux
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Improved Modeling Approach — Hybrid Model

Comparison of Spatial Distribution of Residuals
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O Darcy flow in matrix
O Pipe flow in conduits

O Conduit locations and
dimensions estimated through
model calibration

O Dramatic improvement in
calibration
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Improved Modeling Approach — Hybrid Model

WSFM-08 & NFM-08 Head Calibration Comparison
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Improved Modeling Approach — Hybrid Model

Feo
x

T — \liles
0 10 20 40

Reynolds Number

0 - 1, laminar flow, Darcy's Law valid
1-10, transitional

10 - 80, laminar flow, Darcy's Law invalid

60 - 600, weakly turbulent flow, Darcy's Law invalid
600 - 1265, strongly turbulent flow, Darcy's Law invalid

The Reynolds number relates the four factors that determine
whether flow will be laminar or turbulent; fluid density, viscosity,
discharge velocity, and the diameter of the passageway through
which fluid moves. Experimentation has shown that Darcy's Law is
valid only when conditions are such that the resistive forces of
viscosity predominate. These conditions prevail when the Reynolds
number is less than 1 to 10.

Simulated Conduits

l:] County Boundary
] wsFMm-08 Boundary

Reference Top: Schneider, Upchurch, Chen, and Cain, 2008, Simulation of Groundwater
Flow in North Florida and South Georgia... Suwannee River Water Management District.

Reference Bottom: GeoHydros, 2009, Three-Dimensional Hybrid Finite-Element Ground-
Water Flow Model of the Western Santa Fe River Basin, Florida. The Coca-Cola Co.

Comparison of Estimated Reynolds Number Based on Representative Aquifer Material
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Improved Modeling Approach — Hybrid Model

WSFM-08 Simulated Springs
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Improved Modeling Approach — Hybrid Model

WSFM 08 Slmulated Effects of Pumping on Sprmgsheds

High Water Simulation

Low Water Simulation

Example: Lake City Pumping = 4.5 MGD

Ichetucknee Blue Hole
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Wakulla Area Hydrogeology KARST CONDUITS

Western Woodville Karst Plain
O Flow is fastin caves and in

surrounding aquifer (caves too
small to map)

Large part of Wakulla’s discharge is
inflow from swallets (surface
water)

Wakulla & Spring Creek are
connected

Spring Creek began reversing for
appreciable durations in 2006

Spring Creek reverses now every
summer for weeks - months

We're loosing the largest spring in
Florida & the associated fresh
water that flows to the Gulf of
Mexico estuaries

GeoHydros
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Presenter
Presentation Notes
The most significant thing about karst aquifers and the thing that makes them so different from other aquifers is that flow is really fast meaning hundreds of feet to thousands of feet per day as opposed to feet per year. This map shows the results of several groundwater tracing experiments that we’ve done in the WKP that reveal those fast velocities (>a mile per day through the mapped caves but still ~1000 feet/day through parts of the aquifer where no caves had been mapped. 

One of the most significant traces that we did revealed a rapid flow path connecting the City of Tallahassee’s wastewater spray field to Wakulla Springs (~12 miles with a travel time of about 60 days). That trace helped encourage the City to invest $250 million dollars in upgrades designed to reduce nitrate concentrations going to the spray field and thus to the spring.

Another significant trace was the southernmost trace from Lost Creek, which flowed to both Spring Creek (as expected) and to Wakulla Spring (unexpected). This shift in flow directions from south to north occurred as a result of spring flow reversals at Spring Creek that have been occurring at significant levels only since 2006. As the phrase implies, spring flow reversals are periods when the springs are siphoning water into the aquifer rather than discharging. It is a common occurrence along the Suwannee River when the river floods and drives river water into the caves. When this happens to springs along the coast, it propels saltwater deep into the Floridan aquifer. Our tracer test happened to occur immediately before such a reversal at Spring Creek (the largest spring in Florida). As a result, we were able to document the reversal and learned that Spring Creek and Wakulla must be connected by one or more large conduits.

Those results drew our attention to a larger issue than velocities the question of why the coastal springs are reversing and the impact of those reversals on the aquifer and inland spring flows. 
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Presenter
Presentation Notes
Here in the world is Punch Bowl Sink …


Wakulla — Regional Groundwater Flow Model

2010-2011
\

Tallahassee

Gulf of Mexico

GeoHydros

19 of 70 Specialized Geological Madeling




Wakulla Model - History

20 of 70

Began in 2002 with Rodney DeHan and FGS
Can we build a better mouse trap?

Identify technologies that would accommodate conduit flow
Hybrid Modeling Technology — established in early 1990’s

Built on existing models
largely limited to Florida — WoodVville Karst Plain

Expanded regional scope in 2009
Allow model to define springshed boundaries internally
Used compiled pumping and geologic datasets

2011 - Learned of much more pumping
compiled all pumping data from Florida & Georgia
forced reinterpretation of geology — compiled from more available data

2012 — new datasets compiled and presented
model needs to be revised
should address technologies developed for the Santa Fe Model

Mizaw GeoHydros
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2010 Model Results

Potentiometric Surface Velocities
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Presenter
Presentation Notes
These plots show the potentiometric surface of the Floridan aquifer and the distribution of groundwater velocities simulated by the 2010 calibrated model.
Conduits were extended well north of the mapped caves and traced flow paths in order to calibrate to low heads throughout the central part of the model domain in Georgia that were present in both the low-water and the high-water calibration datasets.
As with the western Santa Fe model, the distribution of heads and velocities simulated by the regional hybrid model are consistent with expected patterns in a karst aquifer.
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Presenter
Presentation Notes
The geologic framework for the 2010 model was constructed from geologic maps and data derived from 900 wells and boreholes predominantly published or provided by the U.S. Geological Survey. The model surfaces were ultimately derived from maps published by the USGS – Miller (1986).
Hydrogeologic Framework of the Floridan Aquifer System in Florida and in Parts of Georgia, Alabama, and South Carolina, James A. Miller, USGS Professional Paper 1403-B, 1986
The geologic structure was fairly uniform and layered except for the Surficial aquifer, which was highly variable in terms of thickness, and for a trough of thicker confining unit sediments and depressed limestone elevations corresponding to the Gulf Trough. Generally, the Surficial aquifer and confined conditions in the Floridan aquifer system were present through the central part of the model while unconfined conditions marked the northwestern and southern parts of the model domain.
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£..0 2000 additional borelogs
***" 0 12010 Model

e “Miller 1986

e Miller 1988
0 2012 Model - added
e ‘Herrick 1961

. McFadden & Others
1986

o . FLLithProg Database
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Presenter
Presentation Notes
As a consequence of incorporating the larger magnitude pumping, it became clear that the geologic framework would have to be revised. This included removal of conduits from a large part of the Georgia section of the model domain and refining the delineation of the confining unit and the lower permeability material that constitutes the Gulf Trough / Apalachicola Embayment.
To achieve the geologic framework revisions, geologic and lithologic picks from 2000 additional borelogs were compiled and integrated into the model surface delineations. The data was compiled for the majority of the Floridan aquifer system because that is how it was compiled in the source documents and because doing do will facilitate application in adjacent Florida basins.
All data sources now include:
Herrick, S.M., 1961, Well logs of the Coastal Plain of Georgia: Georgia Geologic Survey Bulletin 70, 462 p.
McFadden, S.S., Hetrick, J.H., Kellam, M.F., Rodenbeck, S.A., and Huddlestun, P.F., 1986, Geologic data of the Gulf Trough area, Georgia: Georgia Geologic Survey Information Circular 56, 345 p.
Miller, J.A., 1986. Hydrogeologic Framework of the Floridan Aquifer System in Florida and in Parts of Georgia, Alabama, and South Carolina, James A. Miller, USGS Professional Paper 1403-B.
Miller, J.A., 1988, Geohydrologic data from the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama: U.S. Geological Survey Open-File Report 88–86, 678 p.
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Presentation Notes
The first task was to further research the Georgia pumping to identify or estimate agricultural pumping locations and the distribution of the magnitudes reported for each County. In doing this we uncovered substantially more detailed accountings of pumpage both for agricultural and municipal/industrial usage. Ultimately we compiled all new pumping datasets both for Georgia and Florida that were based on the more in depth estimations. The total pumpage was substantially larger than was previously estimated and the new data pointed to Georgia as the larger groundwater consumer in the region likely to contribute to Florida spring flows – by 4x-6x for agricultural extractions.
The data shows that total agricultural extractions in the parts of Georgia within the model domain are 93 MGD, which by comparison is more than 10 MGD larger than the low flow at Wakulla Spring. 
The primary source of data for the location and magnitude of Georgia extractions was the National Environmentally Sound Production Agriculture Laboratory (NEPSAL), which is part of the University of Georgia’s College of Agricultural and Environmental Sciences.
The primary sources of data for agricultural pumping in Florida were the NW Florida Water Management District and the Suwannee River Water Management District.
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Again, the data search revealed that municipal extractions from the Floridan aquifer in Georgia are more than double those in Florida.
The primary data source for Georgia was:
Fanning, J.L. and Trent, V.P., 2009, Water Use in Georgia by County for 2005; and Water-Use Trends, 1980–2005:U.S. Geological Survey Scientific Investigations Report 2009–5002, 186 p., Web-only publication available at http://pubs.usgs.gov/sir/2009/5002/.
The primary data sources for Florida were the NW Florida Water Management District and 
Marella, R.L., 2009, Water withdrawals, use, and trends in Florida, 2005: U.S. Geological Survey Scientific Investigations Report 2009-5125, 49 p.
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Revised Hydrostratigraphic Framework

O Expanded Model to bottom of Oldsmar or equivalent
O 9 model layers (expanded from 5)
O Divisions set to describe lateral and vertical heterogeneity in Floridan aquifer system

units
GWM
LAYER AGE HIGH PERM LOW PERM NOTE
Post Miocene Undif. sand & clay . . . )
1 Continuous, vertical K will define where Hawthorn present

Miocene Altamaha Hawthorne

2 Miocene Chattahoochee / Discontinuous, all Miocene limestones where present
Tampa / St. Marks

3 Upper Oligocene Suwannee Discontinuous, all Suwannee where present
4 Lower Oligocene Marianna / Undif. Discontinuous, all Marianna where present

5 Upper Late Eocene Ocala Cooper Marl Discontinuous, all Ocala where present

6 Lower Late Eocene Wilson Undif. / Barnwell Discontinuous, horizontal K will define Wilson /

Undifferentiated division

7 Upper Middle Eocene Avon Park Lisbon Continuous, horizontal K will define Avon Park / Lisbon

division
8 Lower Middle Eocene Lake City Tallahatta Continuous, horizontal K (\i/;/\lllilsti:i::ne Lake City / Tallahatta
9 Early Eocene Oldsmar HTGB Continuous, horizontal K\_Nl_ll define Oldsmar / HTGB
division
- Paleocene Cedar Key Cedar Key Top of the layer is bottom slice of model
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Presentation Notes
The model was expanded vertically to include all of the upper Floridan aquifer and much of the lower Floridan aquifer (down to the bottom of the Oldsmar Limestone or equivalent). The layer configuration was expanded from 5 layers to 9 layers such that the lateral and horizontal heterogeneity in the Floridan aquifer systems limestones could be adequately represented. The result is a much more detailed and defensible delineation of the confining unit and the Gulf Trough materials.
The subsequent 8 slides will depict the distribution of relatively low and high permeability material within the respective model layers – going from lowest (model layer 9) to highest (model layer 3). Each colored zone will be modeled as a homogeneous unit with respect to hydraulic conductivity where the value (in the horizontal and vertical directions) will be established through model calibration but bracketed by values appropriate for the rock type.
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Revised Framework — Early Eocene Layer
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Presentation Notes
Model layer 9
Early Eocene / green = carbonate rocks / gray = siliciclastic rocks
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Revised Geology — Lower Middle Eocene Layer
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Presentation Notes
Model layer 8
Lower Middle Eocene / green = carbonate rocks / gray = siliciclastic rocks
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Revised Geology — Upper Middle Eocene Layer

I —_ L}

Legend

Lithology of Upper Middle Eocene Layer
Ij Consist primarily of carbonate rocks
:] Consist primarily of clastic rocks

— GWIW Domain

@ caTES

® Carbonate 4  Clastic
\ DOZARK
ENTERPRISE

O

EUFAULA

TALLAHASSEE

L]
LAKE CITY

ﬁm@%ﬂl = !
: . LLAWAY s : :.
N o’
F .. L] ;
29 of 70 Mz GeoHydros

g Specialized Geological Modeling


Presenter
Presentation Notes
Model layer 7
Upper Middle Eocene / green = carbonate rocks / gray = siliciclastic rocks
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Revised Geology — Lower Late Eocene Layer
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Presentation Notes
Model layer 6
Lower Late Eocene / green = carbonate rocks / gray = siliciclastic rocks / tan = mixed carbonates and clastics
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Revised Geology — Upper Late Eocene Layer
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Presentation Notes
Model layer 5
Upper Late Eocene / green = carbonate rocks / blue = Unit is absent (Gulf Trough & Apalachicola Embayment)



Revised Geology — Lower Oligocene Layer
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Presentation Notes
Model layer 4
Lower Oligocene / green = mixed clastic and carbonate rocks (associated with Gulf Trough and Apalachicola Embayment deposition) / blue = Unit is absent (outside of Gulf Trough & Apalachicola Embayment)



Revised Geology — Upper Oligocene Layer
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Presentation Notes
Model layer 3
Upper Oligocene / green = carbonate rocks / blue = Unit is absent



Completion Tasks & Objectives
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Revise calibration datasets
e Typically use one period

e Would like to use two (high-water & low-water) based on benefits
observed in the Santa Fe Model

Revise model framework with new geologic delineations

Calibrate Model
e Simultaneous calibration to two datasets

e Adapt global parameter estimation (optimization) code to hybrid
model

Develop scenario analyses
e Impacts of pumping (GA vs FL)
e Impacts of sea-level rise

Timeline: 6 months to 1 year — depending on calibration approach

GeoHydros

Specialized Geotoglcal Maodeling




Probable Applications of Completed Model

O Predict impacts of groundwater extraction on spring flows

e Simulate springshed boundaries and how they interact
e Simulate specific spring discharges
e Simulate magnitude and spatial location of pumping
e Simulate specific groundwater extractions
O Predict impacts of changing recharge conditions on spring flows
e Simulate land use and land use changes
e Simulate 3D hydrostratigraphic framework
O Map spring and well vulnerability to contamination
e Simulate groundwater flow patterns to springs
e Simulate groundwater velocities

O ldentify sources of contamination to springs

GeoHydros
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Thanks for Listening
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