

Importance of a Sound Regional Groundwater Flow Model for Water Resource Management

Wakulla & Leon County Soil and Water Conservation Districts Natural Resources Conservation Service January 16, 2014

> Todd Kincaid, Ph.D. *GeoHydros, LLC*

Problem – Diminishing Groundwater Flow

- o Diminished Spring Flows
 - Reduced flow to Wakulla & Spring Creek springs
 - Spring Creek is now reversing flow in summers
 - Flow is diverted to Wakulla
 - Diminished water clarity at Wakulla
 - Salt water intrusion at Spring Creek
 - Rapid and pervasive salt water intrusion
 - Spring Creek reversals send salt water at least 3 miles inland via conduits
 - Salt water persists at depth until groundwater levels rise sufficiently to force it back out
 - Duration of salt water intrusions and vertical extent likely increasing
- Failing to recognize and address problems
 - Pumping and sea level rise important factors
- Existing models and modeling approaches incapable of delivering reliable predictions
 - Cedar Key

- o Inaccurate conceptualization
 - Assume "Equivalent Porous Media" Aquifer is a sand box
 - Reality Aquifer is karst where conduit flow is dominant
- o Inaccurate water budget
 - Let models dictate how much water flows through the aquifer
 - Coastal boundaries are not constrained
 - Assume large diffuse flow to Gulf of Mexico (no data)
 - Reality Spring flows represent majority of flow to Gulf of Mexico
- Do not incorporate all of the key factors affecting flow
 - Not large enough (political vs. natural boundaries)
 - Overly simplified spatial and magnitude assignments (*i.e. pumping*)
 - Lack of data (can usually be overcome with enough work)

Modeling Problem Examples

North Florida Model (SRWMD)

- o Presented as "well calibrated"
- Closer inspection big errors
 error > 5 feet: 207 wells

error > 10 feet: 63 wells

error > 20 feet 13 wells

Modeling Problem Examples

Inaccurate simulation of spring and river flows

- Flows simulated at expense of head
- Over-estimates head in rivers
 by 5 20+ feet

Modeling Problem Examples

Simulated permeabilities too high

- Elevated permeabilities required because conduits not simulated
- 10 100+ times higher than
 observed and published values
- Distribution not geologically defensible

Mathematics invalid over half of model domain

Under-predicts Gainesville cone of depression by 30+ feet

Under-predicts Gainesville zone of influence by 100+ square miles

	CFS	%	,
Total Simulated UFA Flux	13,130		
Rivers & Springs	7,163	55%	
Wells	1,005	8%	
Coastal Boundaries	1,809	14%	
Non-coastal Boundaries	3,153	24%	

Over-estimates total flow through

aquifer Under-estimates impacts of pumping

Non-verifiable Boundaries = 38% of Total UFA Flux

Simulates Conduit & Matrix Flow

- o Darcy flow in matrix
- o Pipe flow in conduits
- Conduit locations and dimensions estimated through model calibration
- Dramatic improvement in calibration

Hybrid Model

EPM Model

Substantially more reliable mathematics

Reasonably Simulate Springsheds

Reasonably Simulate Impacts of Groundwater Pumping

16 of 70

Wakulla Area Hydrogeology – KARST CONDUITS

Western Woodville Karst Plain

- Flow is fast in caves and in surrounding aquifer (caves too small to map)
 - Large part of Wakulla's discharge is inflow from swallets (surface water)
- Wakulla & Spring Creek are connected
- Spring Creek began reversing for appreciable durations in 2006
- Spring Creek reverses now every summer for weeks - months
- We're loosing the largest spring in Florida & the associated fresh water that flows to the Gulf of Mexico estuaries

Spring Creek – Saltwater Intrusion

Wakulla – Regional Groundwater Flow Model

Wakulla Model - History

- Began in 2002 with Rodney DeHan and FGS Can we build a better mouse trap?
- Identify technologies that would accommodate conduit flow Hybrid Modeling Technology – established in early 1990's
- Built on existing models
 largely limited to Florida Woodville Karst Plain
- Expanded regional scope in 2009
 Allow model to define springshed boundaries internally
 Used compiled pumping and geologic datasets
- 2011 Learned of much more pumping compiled all pumping data from Florida & Georgia forced reinterpretation of geology – compiled from more available data
- 2012 new datasets compiled and presented model needs to be revised should address technologies developed for the Santa Fe Model

2010 Model Results

Potentiometric Surface

2010 Model Framework

~900 wells and boreholes

Revised Geology

Agricultural Pumping

National Environmentally Sound Production Agriculture Laboratory (NESPAL) - University of Georgia's College of Agricultural and Environmental Sciences Georgia EPD NWFWMD SRWMD

GA: 183 MGD – Contributing Counties / 93 MGD Model Domain FL: 29 MGD – Contributing Counties / 21 MGD Model Domain

Municipal Pumping

GA: Fanning & Trent 2009 FL: Maralla 2009

GA: 54 MGD – Contributing Counties FL: 24 MGD – Contributing Counties

FL: NWFWMD

Revised Hydrostratigraphic Framework

- o Expanded Model to bottom of Oldsmar or equivalent
- 9 model layers (expanded from 5)
- Divisions set to describe lateral and vertical heterogeneity in Floridan aquifer system units

GWM LAYER	AGE	HIGH PERM	LOW PERM	NOTE	
1	Post Miocene	Undif. sand & clay		Continuous, vertical K will define where Hawthorn present	
	Miocene	Altamaha	Hawthorne		
2	Miocene	Chattahoochee / Tampa / St. Marks		Discontinuous, all Miocene limestones where present	
3	Upper Oligocene	Suwannee		Discontinuous, all Suwannee where present	
4	Lower Oligocene		Marianna / Undif.	Discontinuous, all Marianna where present	
5	Upper Late Eocene	Ocala	Cooper Marl	Discontinuous, all Ocala where present	
6	Lower Late Eocene	Wilson	Undif. / Barnwell	Discontinuous, horizontal K will define Wilson / Undifferentiated division	
7	Upper Middle Eocene	Avon Park	Lisbon	Continuous, horizontal K will define Avon Park / Lisbon division	
8	Lower Middle Eocene	Lake City	Tallahatta	Continuous, horizontal K will define Lake City / Tallahatta division	
9	Early Eocene	Oldsmar	HTGB	Continuous, horizontal K will define Oldsmar / HTGB division	
-	Paleocene	Cedar Key	Cedar Key	Top of the layer is bottom slice of model	

Revised Framework – Early Eocene Layer

Revised Geology – Lower Middle Eocene Layer

Revised Geology – Upper Middle Eocene Layer

Revised Geology – Lower Late Eocene Layer

Revised Geology – Upper Late Eocene Layer

Revised Geology – Lower Oligocene Layer

Revised Geology – Upper Oligocene Layer

Completion Tasks & Objectives

- Revise calibration datasets
 - Typically use one period
 - Would like to use two (high-water & low-water) based on benefits observed in the Santa Fe Model
- Revise model framework with new geologic delineations
- o Calibrate Model
 - Simultaneous calibration to two datasets
 - Adapt global parameter estimation (optimization) code to hybrid model
- Develop scenario analyses
 - Impacts of pumping (GA vs FL)
 - Impacts of sea-level rise
- Timeline: 6 months to 1 year depending on calibration approach

Probable Applications of Completed Model

- Predict impacts of groundwater extraction on spring flows
 - Simulate springshed boundaries and how they interact
 - Simulate specific spring discharges
 - Simulate magnitude and spatial location of pumping
 - Simulate specific groundwater extractions
- Predict impacts of changing recharge conditions on spring flows
 - Simulate land use and land use changes
 - Simulate 3D hydrostratigraphic framework
- Map spring and well vulnerability to contamination
 - Simulate groundwater flow patterns to springs
 - Simulate groundwater velocities
- o Identify sources of contamination to springs

Acknowledgements

- Florida Geological Survey
 - Rodney DeHan, Jon Arthur, Scott Dyer, Tom Greenhalgh, Harley Means
 - FGS Staff
 - Applied research to solve problems
 - www.geohydros.com/FGS/
- o The Coca-Cola Company
 - Vested interest in sustained clean freshwater discharge to the Western Santa Fe River
 - "Diminished water quality & quantity diminishes our business and their brand"
 - <u>www.geohydros.com/CCNA/</u>

